
SUGGESTED SOLUTIONS TO THE MIDTERM EXAMINATION

solution to the 1st question

(a). A PDE is called linear if it has the form Lu = f for given R−linear operator
L and given function f .

(b). A C2(R2) function u satisfying ∆u = 0 is called a harmonic function.

(c). Since
du

ds
(s, x0 − s) = ∂tu(s, x0 − s)− ∂xu(s, x0 − s) = 0,

therefore

u(t, x) = (t+ x)4.

(d). The solution is u(x, y) = F (x) +G(y) where F,G ∈ C1(R).

solution to the 2nd question

(a). Note ∫
R
e−x2

dx =

√∫
R

∫
R
e−(x2+y2)dxdy

=

√∫ 2π

0

∫ ∞

0

re−r2drdθ

=
√
π.

(b). Consider un(t, x) =
1
ne

−n2t sinnx, then un satisfies

∂tun − ∂2
xun = 0, t < 0, x ∈ R,

un(0, x) =
1

n
sinnx, x ∈ R.

Note

lim
n→∞

sup
x∈R

|un(t, x)| = lim
n→

1

n
e−n2t = ∞,

while

lim
n→∞

sup
x∈R

|un(0, x)| = 0,

therefore the 1D heat equation is not well-posed.
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(c). Suppose the intial-boundary value problem has two solutions u1, u2 with u1 ̸=
u2, denote v := u1 − u2, then

∂tv − ∂2
xv = 0, (t, x) ∈ [0,∞)× [0, L],

v(0, x) = 0,

v(t, 0) = 0, v(t, L) = 0.

Multiplying the above equation by v and integrating the resultant over [0,∞) ×
[0, L], ∫ L

0

v(t, x)2dx+

∫ ∞

0

∫ L

0

|∂xv(t, x)|2dxdt = 0,

which implies that v ≡ 0.

(d). Let v(t, x) = et
7

u(t, x), then

∂tv − ∂2
xv = 0, (t, x) ∈ [0,∞)× R,

v(0, x) = ϕ(x), x ∈ R.

Then

v(t, x) =

∫
R

1√
4πt

e−
(x−y)2

4t ϕ(y)dy,

therefore

u(t, x) =

∫
R

1√
4πt

e−t7− (x−y)2

4t ϕ(y)dy.

solution to the 3rd question

We claim that for u ∈ C2(B1) ∩ C1(B1) with ∆u > 0,

sup
B1

u ≤ sup
∂B1

u.

Indeed, suppose u attains its maximum in B1 , then ∆u < 0 which is a contradiction,
therefore u must attains its supreme at ∂B1.

Now for v ∈ C2(B1) ∩ C1(B1) with ∆v ≥ 0, we consider vε(x) = v(x) + ε|x|2,
then vε ∈ C2(B1) ∩ C1(B1) and ∆vε > 0, by the above discussion,

sup
B1

vε ≤ sup
∂B1

vε.

Since
sup
B1

v < sup
B1

vε, sup
∂B1

v + ε ≥ sup
∂B1

vε,

let ε goes to 0, we have
sup
B1

v ≤ sup
∂B1

v.

solution to the 4th question

(a). By direct computation,

∆(u2) =

n∑
i=1

∂2
i (u

2) = 2

n∑
i=1

∂i(u∂iu) = 2

n∑
i=1

|∂iu|2 = 2|∇u|2.
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(b). By direct computation,

∆(η2|∇u|2)

=

n∑
i=1

∂2
i

η2
n∑

j=1

|∂ju|2


=

n∑
i=1

∂i

2η∂iη ·
n∑

j=1

|∂ju|2 + 2η2
n∑

j=1

∂ju · ∂i∂ju


=

n∑
i=1

2|∂iη|2
n∑

j=1

|∂ju|2 + 2η∂2
i η ·

n∑
j=1

|∂ju|2 + 8η∂iη ·
n∑

j=1

∂ju · ∂i∂ju+ 2η2
n∑

j=1

|∂i∂ju|2


=2η∆η|∇u|2 + 2|∇η|2|∇u|2 + 8η

n∑
i,j=1

∂iη · ∂ju · ∂i∂ju+ 2η2
n∑

i,j=1

(∂i∂ju)
2.

(c). By Hölder’s inequality,

8η

n∑
i,j=1

∂iη · ∂ju · ∂i∂ju ≥ −8|∇η|2|∇u|2 − 2η2
n∑

i,j=1

(∂i∂ju)
2,

then by (b), we have

∆(η2|∇u|2) ≥ (2η∆η − 6|∇η|2)|∇u|2.

(d). Since η ∈ C2
c (B1) , therefore there exists a constant C0 > 0 such that

|η| ≤ C0, |∇η| ≤ C0, |∆η| ≤ C0,

then by (a) and (d),

∆(η2|∇u|2 + 4C2
0u

2) ≥ (2η∆η − 6|∇η|2 + 8C2
0 )|∇u|2 ≥ 0,

which implies η2|∇u|2 + Cu2 is a subharmonic function where C = 4C2
0 .

(e). Since η2|∇u|2 + Cu2 is a subharmonic function, then

sup
B1

(η2|∇u|2 + Cu2) ≤ sup
∂B1

(η2|∇u|2 + Cu2),

which implies
sup
B 1

2

|∇u| ≤
√
C sup

∂B1

u.


